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Using an unbiased and very general joint density of the atomic position vectors
we are able to calculate different probabilities for the sign of the quartet given
its second neighborhood. One already knows that additional chemical
information alters the joint probability distribution (j.p.d.) of structure factors.
That is, they can and will give different j.p.d.’s for the quartet invariant given its
second neighborhood. In this paper we show that even without additional
chemical information the j.p.d.’s of structure factors can be strongly different
from the classical ones if we impose a general j.p.d. for the atomic vectors based
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1. Introduction

The use of nonuniform joint probability distributions (j.p.d’s)
for the atomic position vectors based on a modified Patterson
function has been advocated by Brosius (1979) (see also
Brosius, 1985, 1989). There are two main approaches in this
research. A first one is to use a j.p.d. f(xq, ..., Xy) defined by
f(x;,...,xy) = Cte ]_[ o(x; — x;),
i<j

where Cte is a normalization constant. Q(u) is the modified
Patterson function,

2

O(u) = Z(I;\;_ 11> cos(27q - u).

q

The x; are then no longer independent random variables
(r.v’s). In this approach we must solve the problem of calcu-
lating j.p.d.’s of structure factors E, for non-independent x;.
We claim that this issue is solved to first order by Brosius
(2008). A second approach is to use the additional information
still present in the Patterson function given one or more
interatomic vectors, e.g. the interatomic vector r;, =r; —r,.
Such information has also been used with success by
Giacovazzo (1991) (the theoretical background) and by
Altomare et al. (1992a,b, 1994). However, our approach is
different and is again based on a modified version of
f(x4, ..., xy) above. Since r; and r, are given, we can consider
the much simpler j.p.d.

N
fitxg, .. xy) = Cte [T O(x; — 1) O(x; — 1y).
i=1
A first remark: for this j.p.d. the r.v.’s x; are independent. Since

the origin is not fixed yet, we can apply the transformation
X; = X; + 1, in fi(x4, ..., Xy) above. We then get

N
Lxp, ..., xy) = Cte I:[1 O(x)0(x; +1p).

on the fact that the real distribution of the atomic position vectors is a sum of §

The function Q(x;)Q(x; + r;,) is nothing other than a modified
Patterson superposition function.

Another question one can ask is: Is there any additional
information besides the modified Patterson function
O(x; — x;) that we can still impose on the x;? The answer is yes;
additional chemical information was applied by Heinerman et
al. (1977). There was still some difficulty to be solved in that
the x; are not independent: to calculate j.p.d.’s of invariants the
authors introduce a Von Mises distribution [a similar form was
also obtained by Brosius (2008)]. It is also interesting to note
that in this paper a general expression was needed for the
orientational average of exp[2mwi(th-x+k-y-+1-z)]. This
problem was solved by Brosius (1978) with the B(z,t,s)
formula, which is a generalization of Hauptman’s B(z,t)
formula (Hauptman, 1965) and also a generalization of the
well known formula of Debye [the orientational average of
exp(27ih - x)].

However, there still remains the question whether it is
possible to use additional information without using Patterson
functions or additional chemical information. The answer is
yes, as we will show in this paper. Let us recall the two main
statistical methods used. The first one considers the reciprocal
vectors as the primitive r.v’s [see e.g. Karle & Hauptman
(1958), who introduced this method]. The structure factors E,
are then r.v.’s depending on h. This is an interesting approach
and has also led to various very interesting algebraic formulas.
The second approach considers the atomic vectors x; as the
primitive r.v.’s [see e.g. Klug (1958), Giacovazzo (1977) or van
der Putten & Schenk (1977), to name a few]. In this
approach, the primitive r.v.’s are independent and range with
uniform weight over the entire unit cell. The aim of
this paper is to show that there is still some general and
important additional information present and not used.
Using this information we are able to obtain different
statistical j.p.d.’s of structure factors. We especially treat the
case of the quartet invariant in P1 given its second neigh-
borhood.
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2. The joint distribution f(x4, ..., Xy

We consider the space group P1 and an equal-atom structure.
The (normalized) structure factor for t = N/2 atoms in the
asymmetric unit is then given by

t
E, = (2/N"*)Y cos(27h - 1,),
i=1

where the r; are the atomic position vectors in the asymmetric

unit. Let x;, ..., x, be t random vector variables ranging over
the unit cell. Instead of considering a uniform density
f(x4,...,x,) =1 where the random vector variables range

uniformly over the unit cell, we imagine the set of all piecewise
linear paths in the unit cell with ¢ vertices. Every path then
represents a possible configuration of the crystal. We now
want the x; to range only over these ¢ vertices and afterwards
we want to integrate over all these paths. To put it differently,
we know that the actual distribution of the atomic vectors is a
sum of Dirac ¢ functions. This is important and general infor-
mation. However, it remains to be shown that using this
information we can also get drastically different j.p.d.’s. This
paper will show that this is indeed the case. We know that a
better a priori guess for the j.p.d. f(xy, ..., x,) of the x; is given
by the density

fxq, ..., )oc]_[|:28(x ]
i=1Ls
where the y, are points in the unit cell. We can still go further
and impose possible additional information on the y,. That is,
we can consider the more general setting

r t
f&px) o [Thyy, - y) 200 — y,)
i=1 s=1
Now > i 8(x,—y,) is proportional  to Z [E (y)/N'?
x exp(—27iq - x) where E ) =@Q/NAY cos(27tq y,)
andy = (y;,--.,¥,)- So we have the following setup:
O x) =f Xy YR YD) (D)
where
7 - E) .
f(x17 R X[|y17 R y[) = H[Z qu/z eXp(_znlq ' Xj) )
=1L g
@
where y,, ..., Yy, are ¢t random vector variables ranging over

the unit cell with some j.p.d. A(y,, ...
shortly and where

,y,) to be discussed

%@smwﬂgmmww. 3)

We also denote by Eq(x) the r.v.

A A t

B0 = Ex, ... x) = /N Y cos2mg %), (4)
i=1

Some remark is perhaps needed. Contrary to a widely

used custom we shall not replace E (X) by

[Eq(x) — (E )] /O'[E (x)] where 02[E (x)] is the variance of

E,(x). This is not necessary and puts an additional burden on

the already laborious calculations. So we shall not include
these coefficients ofE,(q)] We shall also see below that
(E‘Zl) = O(1) with respect to N, which is what we want.

3. The quartet and its second neighborhood in P1

We consider the structure factors £, = E,, E, = E,, E;, = E|,
E,=Eyyn Es=E . E;=E,, E,=E,. Thus let
X,,...,X, be t random vector variables representing the ¢
atomic position vectors ry, ..., I,.

El (x) stands for Eh(x) etc. and El (y) stands for Eh(y). Let
Z(xl, ...,X,) be an r.v. depending on the r.v’s xi, ..., X,. Then
we shall denote by

(Z(x))x = [dx,...

the average of Z(xl, e
same way we denote by

(Z(y)y = [dy, ... dy, A(yy, ... Y)Z(1, - -0y)  (6)

the average of the r.v. Z(y,, ...,y,) with respect to y,, ..., y,.
Sometimes we shall simply denote an r.v. Z without an argu-
ment when it is clear from the context whether Z means either
Z(x) or Z(y) (but we shall always denote an r.v. with a
circumflex,” ).

We want to calculate the j.p.d.

P(E,, E,, E, Ey, Es, Eg, E7)
o0

= (1/27) [ duy ...
—00

X d(uy, ..., uy), (7)

X)Z(x.....x) (5
.X,. In the

dx, f(xq, .- -,

x,) with respect to x, ..

du, exp(—u E; — ... —u,E;)

where
Ay, ... uy) = (eXP[iu1E1 x)+...+ i”7E7(X)])x ®)

is the characteristic function. It then follows from the defini-

tion of f(x;,...,X,|y;,...,y,) that
Py, . up) = [dyy ... dy,h(y,. ... ¥)dw. ... 15,y
)
where
E,(y) .
d(uy, ... up,y) = /dx1 [ Z qu/z exp(—2miq - xl)i|
2
X eXp\ i “—Lcos(2mth - x,) + .
+ Wcos[Zn(k +1)- xl]}. (10)
Then
2 2 2
¢(Lt1,...,u7,Y)=1+N(P1(Y)+N§02 N(N)]/Z‘Pz(Y)
2 2 2u uyusuy,
N(N)1/2 (p4(y) + N(N)1/2 (pS + Nz
+o(m) (1)

Acta Cryst. (2008). A64, 564—570

565

J. Brosius * Quartet revisited



research papers

where

0u(y) = it E\(y) + . .. + ius Es(y), (12)

@, = =i — ... — L, (13)

03(y) = (i) i) Es(y) + (i, i) Eg(y) + (iney ity ) E (y)
+ (i, )inas) E(y) + ity )ieg) Ex(y) + (i )it o (y)
+ (i) i1 E (y) + (it )ity Eo(y) + (i) (i) E (y)
+ (i1, )it E4(y) + (itty )ity Ex(y) + (i3 )(i144) Es(y)
+ (it ) ius) Ey(y) + ity )iug B () + (i) (i) E (y)

+ (i) ius) E5(y) + (i) g s (y) + ()i E (y),
(14)

%(i”1)2l::2h()’) +...+ %(iu7)2E2k+Zl(y)

+ (i) )it By (y) + (i) iuz) Ey o (y)

+ (it )itty) B gy (¥) + (i1t )itts) By 14 ()
+ (i1t )ittg) By 11 (y) + (itty)it17) By ()
+ (i) itz By (y) + (i14,)i14) By g ()
+ (i) (it5) By i (8) + (i10)(i116) By i1 (y)
+ () (17) g o (y) + (itt3)itt) By g n(¥)
+ (itt3 ) itts) By g () + (i)t Ey 0 (y)
+ (ita3) it By 0 (y) + (it )it5) Esp g1 ()
+ (i”4)(iu6)E2h+k+21(y) + (iu4)(i”7)Eh+2k+21(y)
+ (ius) (it B 1Y) + Eapprea(¥)]

+ (i) (i) By 1Y) + En i (¥)]

+ (ittg) (i) By i (¥) + Eparin(¥)] (15)

@u(y) =

and

@5 = (iuy ) (i) (ius) + (ius )iy )(ius) + (iuy ) (i )(iug)
+ (iuy ) (g ) (ing) + (g )Giny ) (ineg) + (i) (ins ) (int;).
(16)

O'(1/N?) denotes terms of order 1/[N*(N)"?] or terms of
order 1/N? that will not contribute to the calculation of the
phase invariant. From now on, all r.v’s E will denote r.v.’s
E o(y) unless the contrary is explicitly stated Let us now first
take a look at equation (9). Suppose the joint den51ty
h(y;, ...,y,) depends on the i as a function of the E "

suppose  h(y;,...,y)=F [qu . E,¥..... E, ¥ Let
then Py[(E,),] be the classical j.p.d. of all structure factors, ie.

P(Ey) ] = [dx, ...dx, [T8[E,(x) — E,]. (17)
q

Since ¢(uy, . . L Uy, y) manifestly depends on the y,; as a func-
tion of some E,(y) we can state (proved in the Appendix)

Gy, oo uz) = [dy; Ay Ay, L Y)Buy,  ug )
= f l_[ qu PO[(Eq)q]F(qua E R Eqm)
oo g
X @y, ..., Uz, y), (18)
where in  equation (18) @(uy,...,u,y) denotes
é(uy, ..., u;,y) but where all occurrences of E  (y) are
replaced by E,. We might take eg h(yl, Y
= PO[Eh(y) " +l(y)] We will not pursue this idea here

further and take instead the much simpler density

h(yq, ---,y) =1. (19)

We shall now use the notation o(uy, ..., uq, y)t instead of the
correct notation ¢(u,, . .., u;,y)". Then ¢(uy, ..., u,) becomes

w) = | TTAE, P(E)J G .. 1y, y). (20)

—00 q

Ay, ...,

Next we use ¢(u,, ..., u;,y) = exp[(N/2)Ing(u,, ...,
to develop ¢(u, . .., u,,y)" asymptotically. We get

uz, y)l

N
Elnd)(ul, ce Uz, Y)

=¢(y) +¢, + [03(y) + 94(y) + ¢5]

1
N1/2
yom+er+o(3). e

Uy Uy Uzl
N

Then

Puy, .. 1y, y)
= exp[(N/2) Inp(uy, ...

= exple,(y) + %]{1 +=5

’/‘77 A

N2 [ 0) +eiy) + 5]

U U U U 1
+oy T Ty e® ey + el

1 . (1
o+ er+o(g)} e

1 1 1 U Uy U U
= exp(wz){(l +W<ﬂs +ﬁ<ﬂ§ —Nfﬂg +%)

x explen(y)] + o 0x(0) explin )]
o) el (9] + 5 explin lign o)
+ ‘04(3’)2 + 203(Y)@(y) + 205(y)9s + 2¢,(y)¢s]

—%mmmwﬁ+mwm+0G”
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1 1 U Uyl U
=e><p(<0z){<1 N1/2¢5+2N¢§—N¢§+%)

x exple; (y)] + N} 7 (1 +tyiz %)%(y) exple;(y)]
+ % exple, (V)]s (y)’

1 1
TNz (1 + iz <p5><ﬂ4(y) expley (y)]

+ o explo Wl @3)
+ % exple (Ve (Y)es(y) — % exple, (Ve (y)’
— %eXP[% Wle (Ve @4)

+ O (;;) } (25)

Next we define ¢, as ¢,(y) with every occurrence of Eq(y)
replaced by E,.

In the following, we examine different terms in the previous
equations in turn.

(1) The term

1 1 5, 1 5, wuyusuy,
/dy]"'dy'<1+W¢5+ﬁ¢5_ﬁ%+T

x expley (y)]-

We have
[ dy, ...dy,explg,(y)] = [dE, ...dE; Py(E,, ..., E;)
x exp(iu E, + ... +iusE;)
= ¢o(uy, ... uy), (26)
where
Doty . .. uy)
_ 1 uyuzu, 1, a!
= exp(¢2)|:1 TN T TN ToNS T 0 N/l
@27)

fmmmwwwwmmmmm

_ / dE, .. dE, Py(E,, ..., )N1 (i) Es
x exp(iu E, + ... + ius E;)
1\
= / dE, ...dE, (E) exp(—iE} — ... —1E?)
. . E\E,E; EE,E
x exp(iu Ey + . .. zu7E7)[1 + }ij 5 j\lljZ 5
E,E;E, E,E,E, E,E,E, E,E;E, 1
N1/2 + N1/2 + N1/2 + N1/2 +0 N
Nl/z ~i73 ()i ) Es
(iuy ) (iuy)(ius)
iuy )(iu, )(ius ) (iu 1
I 9(4%@%f+1L+O(N>} o8)

where O'(1/N) means terms of order 1/[N(N)"/*] or terms of
order 1/N that do not contribute to the phase of the quartet.
On the other hand, the term (iu, )(ius)E,(y) contributes

/mmmwwwwmwmmw]

= /dEI ...dE, Py(E,, ..., E})— N1/2 (iuy)(ius)E,
x exp(iu E, + ... + ius E;)
1\
= / dE, ...dE, (E) exp(—iE} — ... —1E9)
. . E\E,E; E,E,E
x exp(iu E, + ... + ius E;) |:1 + }\732 5 j\]ljz 5
E\EJE, FE,E,E, E,E,E;, E,EE, 1
+ N1/2 + N1/2 + N1/2 + N1/2 +0 N
Nl/z (lul)(IMS)E
(fuy )iy ) (ius)
= exp(hi — .. — | s
iuy )(iuy ) (ius ) (iu 1

Also

[ vy, i i) B explon 0]

(2) The term = exp(—duj — ... — k)
(g ) (i, )(iues) + (Wl)(luz)(lua)(l”4)( s) + 0O
1 1 NL/2
dyi---dy, yip \ 1t yiz % @5(y) exple; (y)]-
(30)
Consider a term from ¢;5(y), say (iul)(iuz)Es(y). Then Hence
Acta Cryst. (2008). A64, 564—570 J. Brosius + Quartet revisited 567
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1
[ v e expli )

e { s )
+ 3y )(iuz) (i) + 3(iuy )iy )ing) + 3(iu,)(iug)(in,)
+ 3(iuy ) (iuy ) i) + 3(ines)(iney ) ines)

(l” )(m]zv)l(/l;h)(luzx) [(.us)z + (iuﬁ)z + (iu7)2]

o i ) 1)
e re(y)

2 2
— exp(—du; — ... — lu3)

(g )iy ) (i ) (i)
N1/2 N1/2

[(ius) + (iue)z + (iu7)2]
(1”1)(”‘2)(”‘3)(1”4)} +0O <N) 31)

12
—> exp(—5ui —

{3 +6

N1/2

(3) The term

[dy, ... dy, (1/2N)p5(y) exple, (y)]-

We have

/ dy; - dy, ! €03(Y) exple, (y)]

:ﬁ/dEl...dE7PO(E1,...,E7)¢§

x exp(iu Ey + ... +ius E;)
1 1 7
) 1
x exp(iu, E, + ... + iu, E;)@5 + O <N> (32)

We must see how we can get terms proportional to u u,usu,.
For instance, consider the term (iu,)(iu,)E;, which we repre-
sent by (125), from ¢@;. We can pair this term with the terms
(iu5)(iuy ) E5 which we represent by (345). Then

1 171
[W} N / dE, ...dE; exp(—iE] — ... — 1E7)
+ iuy E7)(iuy )i ) Es(iuts ) ity ) Es
1
= ﬁexp(—zu% T T %u%)(iul)(iu2)(iu3)(iu4)
x [(ius)® +1]. (33)

x exp(i, E; + . ..

On the other hand, the pairing of (iu,)(iu, ) E5 with (iu,)(ius)E;
gives

1 71
[(271)”2} N f dE, ...dE; exp(—iE] — ... —1E?)
ot iug Ep)(iuy ) i) Es (iuy ) (ius) Es

cee %u%)(iul)(iu2)(iu3)(iu4)(iu5)2.

x exp(iu, E, +
1

= ﬁexp( 214% -

(34)

We also get the above contribution [equation (34)] for the
pairings of (125) with (534), (251) with (345) or (453) or (534),
and (512) with (345) or (453) or (534).

The sum of these nine pairings gives (a multiplication factor
of 2 must be taken into account)

(1/2N) exp(— %M% R %u%)Z(iul)(iuz)(iu3)(iu4)[9(iu5)2 +1].
(35)

We can repeat the same process for the terms (136) and (137).
We then get

1 o .
N dE,...dE; Py(E,, ..., E))¢;exp(iv, E, + ... + iu  E;)

1”3)@”1)0“2)0“3)@”4)

1
= Nexp(—%u% —

x {9(ius) + (i) + (iu;)’] + 3} + O @) (36)

(4) The term

1 1
/ dy;...dy, =7 N2 <1 tyiz ‘Ps)¢4()’) exple; (y)]-

Consider a term from ¢,(y), say (iul)(iuz)Eh,k(y). Then

[ vy, i i) By (5 exslioy )]

:/dEl

Nl /2

1 7/2 5 )
= /dE1 ...dE; (E) exp(—E] — ... —3E7)

..dE,dE, , Py(E,.....E,. E, )

—— (i) (iu)) Ey_y exp(iu, Ey + ... + ius E;)

x exp(iu E, + ... + ius E;) <1 + N2

Nl/z (lul)(ZMZ)Eh k

L. . (1
= exp(—duj —... — %u%)ﬁ(lul)z(luz)z +0 (N)
(37)

So this term does not contribute to the the quartet term
(zul)(zuz)(zug)(luzt) The same holds true for the terms
(lul) Ezh(Y) and (lus)(l”e)Ek i(y) from  ¢,(y). Hence
f dy, ...dy, (1/N'?)g,(y) exple,(y)] does not contribute to
the phase of the quartet.

(5) Other terms of equations (23) and (24). Upon inspec-
tion, these terms are either of order 1/[N(N)"?] or of order

568
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1/N containing no contribution to the quartet term

(uy )ity )iz ) (i)

(6) ¢(uy, ..., u;). Collecting the terms from the preceding
section we obtain
o(uy, ..., uy)

=exp(— — ... —u)

1 1 5, 1 5, wuyuzuy,
X <<1+N1/2§05+2N‘P5 _N‘Pz“‘ N

1 u s, 1
X[”WWN*ZN%*O N

1 1 (iuy ) (i, ) ius ) (iuty)
+ <1+N1/2¢5> N1/2 {3¢5+6 N1/2

(g )(iuy ) (i3 ) (i) }
N1/2

x [(ius) + (iug)” + (iuz ']+ 6

g ) s+ (g (s 4 3)

+0O G)) (38)

2 2
= eXp(_ul - - u7)<1 Nl/2 (1 + 3 + 1)§05
34141 1
2 G ) )
. N2 - N2 2 \2
X {(9 + 0)[(ius)” + (ug)” + (iu))1+3+1 :i: 14+ 6}
15

e (%)) (39)

5 5
=exp(—uj — ... —u3) <1 + W% + N‘P%

+ %(iul)(iuz)(iug)(iuo{15[(iu5)2 + (iug)” + (i, Y]+ 11)

Lo <%)) (40)
u7)<1 sl i )

+ (fug) (i ) ius) + Giug ) (i) (i) + (i) (iuy ) (i)
+ (g )iy ) (iug) + (iuy)(ius)(in,)]

+ %(iul)(iuz)(i%)(iu‘l){(15 + lO)[(iu5)2 + (ius)z
[

= exp(—1} —.

P(E,, ..., E,)
/1y [~
= <ﬂ) (W) / du, ... du, exp[—iu,(E, /2"*) —
u
— iu;(E;/2Y%))g <21/2,...,21—;2). (43)

Using the formulas from the Appendix we can write
P(E,, ..., E,)

& exp(—%Ef E%){l + 5o N2 (E\E,Es + E5E,Es
+ E\E,E, + E,E,E; + E\E,E, + E,E,E,)

1 25 (2 E2 EZ
+ien BB BB S + +——3 +11

16N

e (%) } (44)

This gives to order 1/[N(N)"?] the following formula for the
probability P of the quartet being positive given the absolute
values |E,|, ..., |E;|:

1
p, =1 +%tanh{—|E1E2E3E4|

JB(BE BB 5 (45)
2\4 "4 g '

We then get for |E5| = |E4| = |E;| =1

1 25 9
P, =141 tanh{ |E, 152153154|[2 (_Z) +11]}

E E,E.E
~ 1 —%tanh(%). (46)

The classical formula would give instead

E\E,EE
P+ classical — =3 + tan h<| L= 4|) (47)
N
4. Conclusion
Based on an acceptable nonuniform density f(x,,...,x,) # 1

of the atomic random vector variables, we are able to derive a
modified probability formula for the quartet invariant given its

1 3 second neighborhood. Our formula is
+ (i, + 11} +0 <N)) (41) 1
P, = % + %tanh{ — |E\E, E5E, |
2 2 2
(7) The term P(E,, ..., E;). We recall that x |:§ (E 4+ =6 Es 6 4 E _ 3) + 11:| } (48)
2 \ 4
P(E,, ..., E;) . .
00 The overall tendency is the same as for the classical formula,
=127 [ duy...du; exp(—iw,E; — ... — ius E;)
—00 _1 2 2 2
P assica =313 tanh|: |E\E,ESEy|(Es + Eg + E7 — 2):|
X ¢y, - .., Uq). (42)
. 2 (49)
We now apply the transformation u;—>u;/2'/2. Then
Acta Cryst. (2008). A64, 564—570 J. Brosius + Quartet revisited 569
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The difference is noticeable. For instance, equation (49)
cannot predict negative signs for the quartet if
|Es| = |Eq| = |E;| = 1

The calculation for higher neighborhoods quickly becomes
very laborious. An interesting idea would be to calculate such
formulas with a computer; see Peschar & Schenk (1987).

APPENDIX A

Ofc (iu)" exp(—iuE) exp(—u*) du = @n)'? exp(—3E*)H,,(E).

—0o0

(50)

Hy(E) =1. (51)
H,(E)=E. (52)

H,(E) = E* — 1. (53)
H,(E) = E* — 3E. (54)
H,(E) = E* — 6E> + 3. (55)
H(E) = E° — 10E® + 15E. (56)

T Eexp(uE) exp(—1E?) dE = (2) (i) exp(—Lu?). (57)

—00

Ofo E? exp(iuE) exp(—E?) dE = (270)"*[(iu)’ + 1] exp(—Lu?).

—00

(58)

[ E®exp(iuE) exp(—iE*) dE

—00

= 2m)"*[(iu)’ + 3(iu)] exp(—u?). (59)

Proof of equation (18): For notational simplicity we
consider the case ¢[u; E,(y)] where y = (y;, ..., y,). Then

[ olus E\y)1dy = [ dy [ o(u; E,)SE, — E,(y)]dE,
= fga(u; E,) dE, fdy S[E, — Eh(Y)]

Py(Ey)

= [ ¢(u; E,)Py(Ey) dE,. (60)
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